Non-orthogonal joint diagonalization with diagonal constraints
نویسندگان
چکیده
منابع مشابه
Non-orthogonal tensor diagonalization
Tensor diagonalization means transforming a given tensor to an exactly or nearly diagonal form through multiplying the tensor by non-orthogonal invertible matrices along selected dimensions of the tensor. It has a link to an approximate joint diagonalization (AJD) of a set of matrices. In this paper, we derive (1) a new algorithm for a symmetric AJD, which is called two-sided symmetric diagonal...
متن کاملSimple LU and QR Based Non-orthogonal Matrix Joint Diagonalization
A class of simple Jacobi-type algorithms for non-orthogonal matrix joint diagonalization based on the LU or QR factorization is introduced. By appropriate parametrization of the underlying manifolds, i.e. using triangular and orthogonal Jacobi matrices we replace a high dimensional minimization problem by a sequence of simple one dimensional minimization problems. In addition, a new scale-invar...
متن کاملA Novel Non-orthogonal Joint Diagonalization Cost Function for ICA
We present a new scale-invariant cost function for non-orthogonal joint-diagonalization of a set of symmetric matrices with application to Independent Component Analysis (ICA). We derive two gradient minimization schemes to minimize this cost function. We also consider their performance in the context of an ICA algorithm based on non-orthogonal joint diagonalization.
متن کاملNon-orthogonal joint diagonalization in the least-squares sense with application in blind source separation
Approximate joint diagonalization of a set of matrices is an essential tool in many blind source separation (BSS) algorithms. A common measure of the attained diagonalization of the set is the weighted least-squares (WLS) criterion. However, most well-known algorithms are restricted to finding an orthogonal diagonalizing matrix, relying on a whitening phase for the nonorthogonal factor. Often, ...
متن کاملSimultaneous Source Localization and Polarization Estimation via Non-Orthogonal Joint Diagonalization with Vector-Sensors
Joint estimation of direction-of-arrival (DOA) and polarization with electromagnetic vector-sensors (EMVS) is considered in the framework of complex-valued non-orthogonal joint diagonalization (CNJD). Two new CNJD algorithms are presented, which propose to tackle the high dimensional optimization problem in CNJD via a sequence of simple sub-optimization problems, by using LU or LQ decomposition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Progress in Natural Science
سال: 2008
ISSN: 1002-0071
DOI: 10.1016/j.pnsc.2008.01.019